Glycosaminoglycans analogs from marine invertebrates: structure, biological effects, and potential as new therapeutics

نویسنده

  • Mauro S. G. Pavão
چکیده

In this review, several glycosaminoglycan analogs obtained from different marine invertebrate are reported. The structure, biological activity and mechanism of action of these unique molecules are detailed reviewed and exemplified by experiments in vitro and in vivo. Among the glycans studied are low-sulfated heparin-like polymers from ascidians, containing significant anticoagulant activity and no bleeding effect; dermatan sulfates with significant neurite outgrowth promoting activity and anti-P-selectin from ascidians, and a unique fucosylated chondroitin sulfate from sea cucumbers, possessing anticoagulant activity after oral administration and high anti P- and L-selectin activities. The therapeutic value and safety of these invertebrate glycans have been extensively proved by several experimental animal models of diseases, including thrombosis, inflammation and metastasis. These invertebrate glycans can be obtained in high concentrations from marine organisms that have been used as a food source for decades, and usually obtained from marine farms in sufficient quantities to be used as starting material for new therapeutics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Editorial: Glycan diversity in fungi, bacteria, and sea organisms

The cell surface of fungi, bacteria, and sea organisms is highly glycosylated. These glycans are oligo-or polysaccharide molecules that can be secreted or attached to protein or lipids forming glycoconjugates. They present extraordinary structural diversity that could explain their involvement in many fundamental cellular processes, including growth, differentiation, and morphogenesis. Consider...

متن کامل

Marine Non-Glycosaminoglycan Sulfated Glycans as Potential Pharmaceuticals

Sulfated fucans (SFs) and sulfated galactans (SGs) are currently the marine non-glycosaminoglycan (GAG) sulfated glycans most studied in glycomics. These compounds exhibit therapeutic effects in several pathophysiological systems such as blood coagulation, thrombosis, neovascularization, cancer, inflammation, and microbial infections. As analogs of the largely employed GAGs and due to some limi...

متن کامل

Marine Polysaccharides: A Source of Bioactive Molecules for Cell Therapy and Tissue Engineering

The therapeutic potential of natural bioactive compounds such as polysaccharides, especially glycosaminoglycans, is now well documented, and this activity combined with natural biodiversity will allow the development of a new generation of therapeutics. Advances in our understanding of the biosynthesis, structure and function of complex glycans from mammalian origin have shown the crucial role ...

متن کامل

Recent heterocyclic compounds from marine invertebrates: Structure and synthesis

A large variety of unique heterocyclic natural marine products, without terrestrial counterparts, have been isolated from marine invertebrates, mainly sponges, ascidians, and soft corals. Many of these compounds display interesting biological activity. In this review, we report our recent studies on nitrogen-containing heterocyclic compounds (“alkaloids”), as well as some containing sulfur and ...

متن کامل

Alkaloids from marine invertebrates as important leads for anticancer drugs discovery and development.

The present review describes research on novel natural antitumor alkaloids isolated from marine invertebrates. The structure, origin, and confirmed cytotoxic activity of more than 130 novel alkaloids belonging to several structural families (indoles, pyrroles, pyrazines, quinolines, and pyridoacridines), together with some of their synthetic analogs, are illustrated. Recent discoveries concerni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014